Modulation of saccade curvature by ocular counterroll.

نویسندگان

  • Konrad P Weber
  • Christopher J Bockisch
  • Itsaso Olasagasti
  • Dominik Straumann
چکیده

PURPOSE On close inspection, it can be seen that most saccadic trajectories are not straight but curve slightly; in other words, they are not single-axis ocular rotations. The authors asked whether saccade curvatures are systematically influenced by static ocular counterroll (OCR). METHODS OCR was elicited by static whole-body roll position. Eight healthy human subjects performed horizontal and vertical saccades (10 degrees amplitude; 0 degrees and 10 degrees eccentricity; head-fixed coordinate system) in upright and ear-down whole-body roll positions (45 degrees right, 45 degrees left). Three-dimensional eye movements were recorded with modified dual-search coils at 1000 Hz. RESULTS Saccade curvature was systematically modulated by OCR depending on saccade direction. In the horizontal-vertical plane, primarily vertical saccades were modulated with downward saccades curving toward the upper ear and upward saccades curving toward the lower ear. Modulation of saccade curvature in the torsional direction correlated significantly with OCR only in abducting saccades. CONCLUSIONS No universal mechanism, such as visual-motor coordinate transformation or kinematic characteristics of the saccadic burst generator, alone could explain the complex modulation pattern of saccade curvature. OCR-induced changes of the ocular motor plant, including transient force imbalances between agonist eye muscles (vertical rectus and oblique muscles) and shifting eye muscle pulleys, are suitable to explain the found direction-dependent modulation pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static ocular counterroll is implemented through the 3-D neural integrator.

Static head roll about the naso-occipital axis is known to produce an opposite ocular counterroll with a gain of approximately 10%, but the purpose and neural mechanism of this response remain obscure. In theory counterroll could be maintained either by direct tonic vestibular inputs to motoneurons, or by a neurally integrated pulse, as observed in the saccade generator and vestibulo-ocular ref...

متن کامل

Non-human primates exhibit disconjugate ocular counterroll to head roll tilts

To investigate the effect of head roll tilt on the binocular coordination of ocular counterroll in non-human primates, we measured binocular ocular counterroll in two rhesus monkeys fixating a straight ahead target, while adopting different head roll tilt positions. We used two infrared cameras to take snapshots of the left and the right eye in order to measure the resulting ocular counterroll ...

متن کامل

Assessment of ocular counterroll during head tilt using binocular video oculography.

PURPOSE According to recent literature, the presence and the amount of true compensatory ocular counterroll is still debatable. The purpose of the current study was to assess compensatory counterroll in response to lateral head tilt using a new noninvasive recording technique, and, furthermore, to find out whether the amount of counterroll is influenced by the presence or absence of spatial ori...

متن کامل

Ocular Motor Function in Patients with Bilateral Vestibular Weakness

Introduction: Patients with bilateral weakness (BW) have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessmen...

متن کامل

Ocular counterroll modulates the preferred direction of saccade-related pontine burst neurons in the monkey.

Saccade-related burst neurons in the paramedian pontine reticular formation (PPRF) of the head-restrained monkey provide a phasic velocity signal to extraocular motoneurons for the generation of rapid eye movements. In the superior colliculus (SC), which directly projects to the PPRF, the motor command for conjugate saccades with the head restrained in a roll position is represented in a refere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2009